
E&U

IMMERSIVE INTERACTIVITY IN ONLINE SCIENCE LAB COURSES: DESIGNING EFFECTIVE EDUCATIONAL ECOSYSTEMS

Drs. Julie Golden Botti, Abigail Perkins, Evonne Rezler, Ozlem Yavuz-Petrowski, & Jennifer Krill

Quality Matters Connect Conference

Tucson, AZ, USA November 8, 2022

FLORIDA ATLANTIC STEM RESEARCH GROUP FOR DIGITAL LABORATORY LEARNING

Dr. Evonne Rezler,
Senior Associate
Dean for
Undergraduate
Studies, College of
Science [Department
of Chemistry and
Biochemistry]
erezler@fau.edu

Dr. Julie Golden Botti, Assistant Provost, Online and Continuing Education goldenj@fau.edu

Dr. Jennifer Krill, University School Assistant Professor and an Experiential Research Lab Coordinator for Neurophysiology, College of Education jkrill@fau.edu

Dr. Abigail Perkins, Learning Strategist and Educational Researcher, Center for Online and Continuing Education perkinsa@fau.edu

Dr. Ozlem Yavuz-Petrowski, Assistant Lab Director, General Chemistry/Instructor, Department of Chemistry oyavuzpetrowski@fau. edu

Our Purpose. Increasing agency and empowering effective STEM laboratory and technical learning through faculty for students, building and disseminating the evidence-base for best practices in digital and virtual laboratory learning.

ROADMAP

- Learning Objectives
- Immersive Online Content (IOC) Approach
- Quality Connection
- 360° Virtual Reality (VR) Labs
 - Demos
 - Your Turn!
- DIY Toolbox
- Conclusion

LEARNING OBJECTIVES

LO1: Discuss instructional design of the Immersive Online Content (IOC) Approach in order to consider application into course(s).

LO2: Explore Virtual Reality IOC science labs in order to plan for IOC implementation in STEM or non-STEM courses.

LO3: Identify Do-It-Yourself resources of several tools in order to empower decision-making on IOC application for course(s).

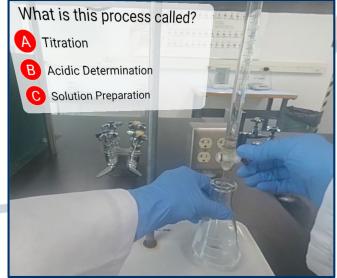
IMMERSIVE ONLINE CONTENT?

Digital Learning With Interactive Media

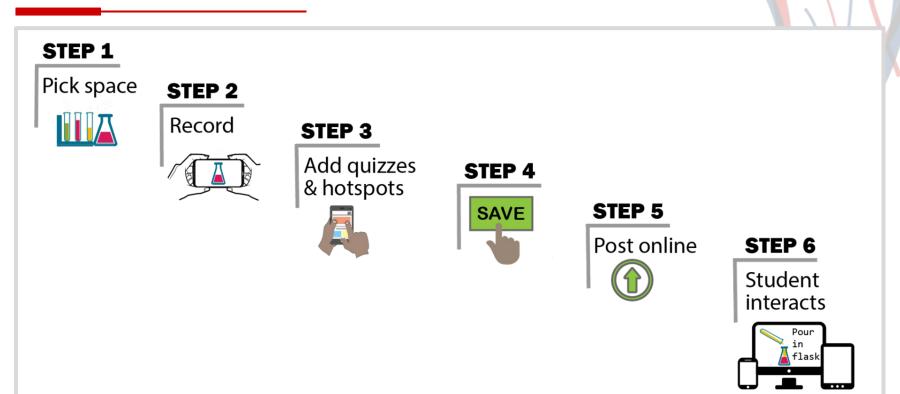
Agentic
Participation
and Identity
Development

IOC APPROACH Learning Objective Alignment

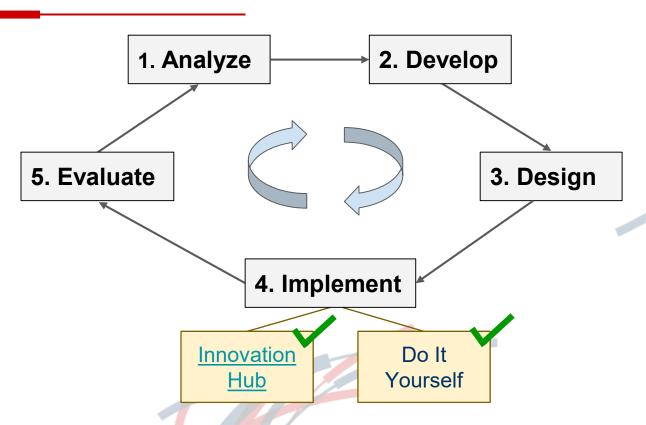
Augmentation of Experience
Targeting Authentic
Learning
Engagement


IMMERSIVE ONLINE CONTENT APPROACH

Ecosystem Foundation of Quality

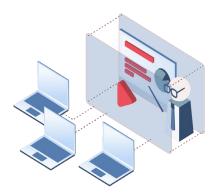

MattersTM Rubrics^[1]

- **★EQUITY** in assignment rubrics^[2]
- **★ACCESS** for students where they are^[3], divergent learning^[4], diverse needs^[5]
- **★INCLUSION** in student-focus^[6], agency^[7], identity^[8]


IMMERSIVE ONLINE CONTENT APPROACH

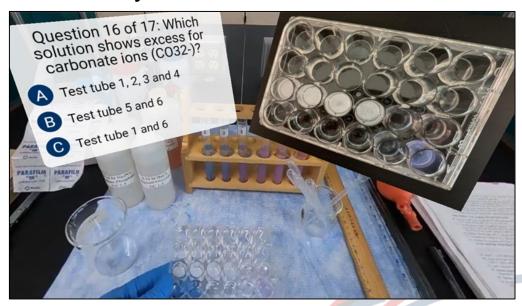
PURSUING
QUALITY
ASSURANCE:
OUR ROADMAP
TO QUALITY IOC
COURSE DESIGN

ITERATIVE R&D PROCESS



IMPACT

- 1. ↓ \$ STEM lab experience
- 2. Equitable consistent student learning experiences across lab sections
- 3. ↑ education access all together
- 4. ↑ instructor presence
- 5. ↓ in-person bench space
- 6. GTA training tool



AFTER 360 Ecosystem enhanced by promotion of teacher presence & student self-regulation

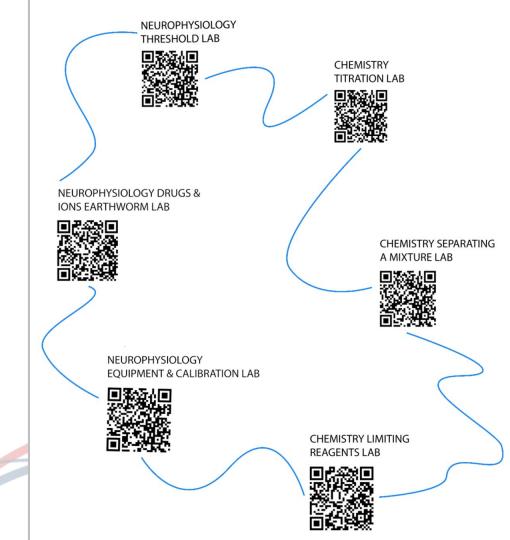
ACTIVITIES & LEARNER INTERACTION

Lab Activity

Data Collection

Precipitate formation observations	Test tube #1	Test tube #2	Test tube #3	Test tube #4	Test tube #5	Test tube #6
Reaction of supernatant liquid w/ NA ₃ PO ₄						
Reaction of supernatant liquid w/ BaCl ₂						

CHEMISTRY 360° VR LAB DEMO


BIOLOGY 360° VR LAB DEMO

TREASURE MAP QUEST: 360° VR LABS

- Explore however you are comfortable
 - Small groups
 - Individually
 - Observe
- QR code for phone
- URL for laptop
- Accessibility

DO IT YOURSELF TOOLBOX: CAMERAS & PRODUCTION SOFTWARE

360° Cameras

- Newer smartphones
- 5K, 6K GoPro Max
 - \$399.98
 - Includes audio and camera stabilization
- Insta360
 - O Insta360 Mini
 - **\$299.99**
 - 8K Insta360 Pro 2
 - **\$4,599 \$5,449**
 - Packages vary with audio and production software
 - Full Adobe Premiere Pro integration

Production Software

- CenarioVRTM
 - o \$1,599/yr
- Articulate 360 suite
 - Storyline 360 app, Rise360 app, plus add-ons
 - \$499/yr
- Adobe 180 & 360/VR
 - Adobe Premiere Pro,
 After Effects,
 Photoshop bundle
 - \$40 \$55/mo
- VR for Education Resources

DO IT YOURSELF TOOLBOX: SOFTWARE SELECTION

CenarioVR

- Using CenarioVR to Create VR eLearning video
- Getting Started in CenarioVR video
- How to Create a Scenario in CenarioVR video
- CenarioVR Experience Virtual Reality video
- Getting Started Guide for CenarioVR document

Articulate

- How to Pick Articulate Storyline vs. Rise for Your eLearning Projects video
- A Quick Overview of Storyline 360 video
 - 360 VR begins at time [13:12 / 29:39]
- Embed Storyline 360 project in Canvas using iframe community forum

DO IT YOURSELF TOOLBOX: AUDIO & LIGHTING

Audio

- Manfrotto VR medium carbon fiber extension boom
 - o \$216.99 **-** \$518.99
- Rode Wireless Go microphone
 - \$199.99
- Zoom H30-VR audio recorder
 - o \$249.99
- Zoom H4N wireless lavaliers audio recorder
 - Zoom F1 Field Recorder + Lavalier Mic
 - o \$169.99

Lighting

- Manfrotto VR small leveling base tripod
 - \$ 293.99 \$303.99
- Aputure 120D II (light)
 - o \$545.00
- <u>Dracast DRSP-500B</u> (light)
 - o \$184.60
- Spiffy Gear Spekular Interview Kit
 - \$595.00

CONCLUSION & THANK YOU!

Anonymous Feedback Survey QR Code

http://tiny.cc/5190vz

Immersive Online Content CoP QR Code

http://tiny.cc/r1ntuz

QUESTION

Ω

ANSWERS

Stay up to date with us at our homepage

Florida Atlantic STEM Research Group for Digital Laboratory Learning

REFERENCES

- [1] Board of Governors (2015, November 5). *Online education 2025 strategic plan*. State University System of Florida. https://www.flbog.edu/wp-content/uploads/2015 11 05-FINAL StratPlan RevPerfIndicators -2020 05 05.pdf
- [2] Rosenberg, J., & Smith, W. (2021, October 26). *Implementing active learning in undergraduate STEM courses* [webinar]. National Science Foundation, Improving Undergraduate STEM Education Initiative. https://youtu.be/slRrGT_6170
- [3] Manier, L., Veague, T., York, T. T., Wagstaff, I., & Carinci, J. (2022). Lessons Learned During COVID-19: Strategies Transforming the Future of STEM Education. American Association for the Advancement of Science Improving Undergraduate STEM Education Initiative. https://aaas-iuse.org/lessons-learned-report
- [4] Mohiuddin, S., Roshan, D., & Knorpp, H. (2016). Utilization of immersive 360 degree spherical videos and google cardboard in medical training and simulation: a novel and multi-dimensional way of learning. *Anesth. Anal*, 122.
- [5] Kandalaft, M. R., Didehbani, N., Krawczyk, D. C., Allen, T. T., & Chapman, S. B. (2013). Virtual reality social cognition training for young adults with high-functioning autism. *Journal of autism and developmental disorders*, *43*(1), 34-44.
- [6] Nesenbergs, K., Abolins, V., Ormanis, J., & Mednis, A. (2021). Use of augmented and Virtual Reality in remote higher education: A systematic umbrella review. *Education Sciences*, *11*(1).
- [7] Freude, H., Reßing, C., Müller, M., Niehaves, B., & Knop, M. (2020, January). Agency and body ownership in immersive virtual reality environments: A laboratory study. In *Proceedings of the 53rd Hawaii International Conference on System Sciences*.
- [8] Goldman, S. R., Petrosino, A. J., & Cognition and Technology Group at Vanderbilt. (1999). Design principles for instruction in content domains: Lessons from research on expertise and learning. In F. T. Durso, R. S. Nickerson, R. W. Schvaneveldt, S. T. Dumais, D. S. Lindsay, & M. T. H. Chi (Eds.). *Handbook of applied cognition* (pp. 595-627). Wiley.
- [9] Quality Matters (2020). Specific review standards from the QM higher education rubric (6th ed.). https://www.qualitymatters.org/sites/default/files/PDFs/StandardsfromtheQMHigherEducationRubric.pdf

SUPPLEMENTAL REFERENCES

- CAST (2018). Universal Design for Learning Guidelines version 2.2. Retrieved from http://udlguidelines.cast.org
- Coy, K. (2020. April 30). *UDL is essential for post-secondary pandemic learning.* eCampusNews, Today's Innovations in Education. https://www.ecampusnews.com/2020/04/30/udl-is-essential-in-post-secondary-pandemic-learning/
- Dick, W., Carey, L., & Carey, O. J. (2001). The systematic design of instruction (5th edition). Longman.
- Maidenbaum, S., & Amedi, A. (2015, March). Non-visual virtual interaction: Can Sensory Substitution generically increase the accessibility of Graphical virtual reality to the blind?. In 2015 3rd IEEE VR International Workshop on Virtual and Augmented Assistive Technology (VAAT) (pp. 15-17). Institute of Electrical and Electronics Engineers. doi: 10.1109/VAAT.2015.7155404
- Mancilla, R., & Frey, B. (2021). *Course design for digital accessibility: Best practices and tools* [White paper]. Quality Matters. https://www.qualitymatters.org/sites/default/files/research-docs-pdfs/QM-Digital-Accessibility-Best-Practices-Tools-WP.pdf
- Martin, F., Budhrani, K., Kumar, S., & Ritzhaupt, A. (2019). Award-winning faculty online teaching practices: Roles and competencies. Online Learning, 23(1), 184-205. doi: 10.24059/olj.v23i1.1329 https://files.eric.ed.gov/fulltext/EJ1211042.pdf
- Santiago, R., & Fernandez, A. (2022, February 1). *FAU Davie's Faculty Innovation Hub: Helping professors innovate their courses with technology.* FAU Broward Campuses News. https://www.fau.edu/broward/news/innovation-hub-a-hit-with-faculty/
- Scavarelli, A., Arya, A., & Teather, R. J. (2019, March). Towards a framework on accessible and social VR in education. In 2019 IEEE conference on virtual reality and 3D user interfaces (VR) (pp. 1148-1149). Institute of Electrical and Electronics Engineers. doi: 10.1109/VR.2019.8798100
- Siu, A. F., Sinclair, M., Kovacs, R., Ofek, E., Holz, C., & Cutrell, E. (2020, April). Virtual reality without vision: A haptic and auditory white cane to navigate complex virtual worlds. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-13). doi: 10.1145/3313831.3376353

CHEMISTRY OER LAB MANUALS

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 1: Measurement and graphs for health science</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 2: Density</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-SA</u>.

Yavuz-Petrowski, O. (2022). <u>General Chemistry for Health Sciences lab manual 3: Periodic table and atomic structure</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 4: Mixtures & compounds</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 5: Gas laws</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 6: Concentration and solution preparation</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-SA</u>.

CHEMISTRY OER LAB MANUALS CONT'D

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 7: Solutions as transporters in diffusion and osmosis</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 8: Spectrophotometry</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 9: Acids and bases</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 10: Titration</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 11: Introduction to organic chemistry</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

Yavuz-Petrowski, O. (2021). <u>General Chemistry for Health Sciences lab manual 12: Introduction to biological macromolecules</u> (A. Perkins, Center for Online and Continuing Education, Ed.). Florida Atlantic University. <u>CC BY-NC-SA</u>.

IMMERSIVE ONLINE CONTENT: APPLICATIONS SPANNING DOMAINS

- Google Arts & Culture
- Center for Online and Continuing Education Professional Development sessions
 - Simulations for Educational Purposes
 - Experience and Create Virtual Field Trips in Your Course:
 An Exploration of Google Arts & Culture
 - Surrounded by 360 VR Videos
 - Conducting STEM Labs Online

OUR ROADMAP TO QUALITY IOC COURSE DESIGN

Salient* IOC Specific Review Standards

- Assessment & Measurement. 3.4
 (sequenced/varied), 3.5 (multiple opportunities
 to track progress w/ feedback)
- Instructional Materials. 4.5 (variety)
- Learning Activities & Learner Interaction.
 5.2 (active learning)
- Course Technology. 6.2 (engagement/active learning)
- Accessibility & Usability. 8.3 (text/images), 8.4 (multimedia access), 8.5 (multimedia ease of use)
- * The whole QM book did not fit on slide (we tried)

ACCOUNTABILITY STRATEGY: SUSTAINING EDUCATIONAL ECOSYSTEM EFFECTIVENESS

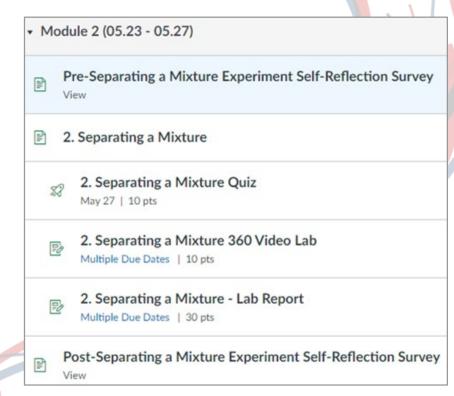
Universal Design for Learning (CAST, 2018) to Futureproof (Coy, 2020)

- Engagement
 - Self-regulation/assessment, reflection
 - Instructor reflection (Martin et al., 2019)
- Representation
 - Audio/visual information alternatives
 - Illustration through multiple media
- Action & Expression
 - Optimize access to tools/assistive technologies

Research in Practice

- Offline & online access
 - PhET simulations
 - OER Lab Manuals
- Streamlining immersion
 - Cognitive load reduction
 - Backup guideposts
- Quality control
 - TA training
 - IOC Community of Practice
 - Continual improvement of multimedia accessibility (Mancilla & Frey, 2021)

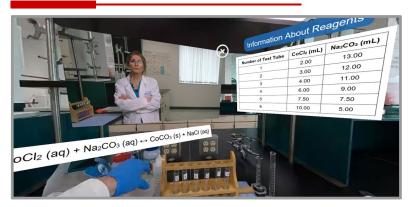
THE TRANSFORMATIONAL GOAL: IMMERSIVE ONLINE CONTENT APPROACH


Bridging research and practice with data-driven decision making

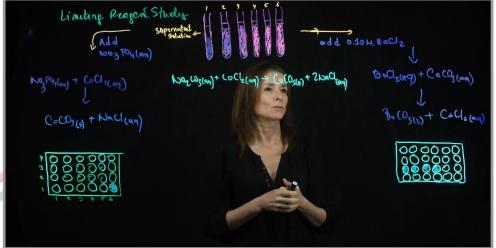
RESEARCH QUESTIONS

- 1) Will implementing a high-level IOC approach in online biology and chemistry laboratory course sections result in no difference of student learning of technical scientific skills and discipline-specific concepts versus student learning in 100% in-person laboratory course sections?
- 2) Can the high-level IOC approach be utilized to implement high-quality standardized TA training for future proofing digital instructional delivery?
- 3) Will implementation of faculty workshops support more faculty to be trained and pursue the development and implementation of high-level IOC approach in technical STEM laboratory courses?

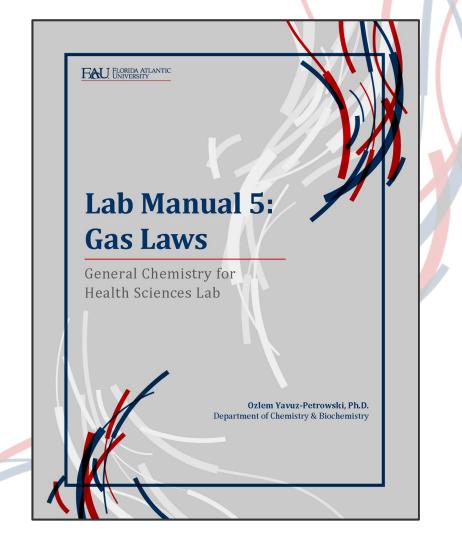
IMMERSIVE ONLINE CONTENT: R&D INSTRUMENTS


- → Course-Based Undergraduate Research Experiences (CUREs) rubrics
- → Virtual Engagement Questionnaire (VEQ)
- → Student Assessment of Their Learning Gains (SALG) survey

STUDENT IMPACT


- "I have a better understanding of threshold and more confidence on the topic,"
- "As a result of the separating a mixture experiment, I will carry my knowledge of how to use certain lab tools that might be used for future experiments,"
- "The 360 video helped me as an individual learner by giving me personal questions that I have to answer to understand what was being done in the lab."
- "...the 360 degree video helped me because I like having visuals, it helps me learn so the video really helped me understand."

DEMONSTRATION: CHEMISTRY 360° VR LABS



OER: CHEMISTRY 360° VR LABS

Yavuz-Petrowski, O. (2021).

General Chemistry for Health
Sciences lab manual 5: Gas
laws (A. Perkins, Center for
Online and Continuing
Education, Ed.). Florida
Atlantic University. CC BYNC-SA.

DO IT YOURSELF TOOLBOX: ACCESSIBILITY

Existing with Varying Degrees of Access and Resources

- Traditional person interpreter
- Two VR versions, one with all hotspots as audio
- Visual-to-Audio Sensory Substitution Devices (SSDs)
- Headset/smartphone triggers hotspots by
 - Tracking eye direction
 - Additional controller
- Lock rotations/zoom to 2D plane options
- WebVR with A-Frame to build multi-device interaction
- Haptic auditory white cane
- Haptic feedback gloves and shoes
- How Do People with Low Vision...Complete Science Labs?
- VR/AR in Canvas LMS with <u>EON Reality</u>

RESOURCES FOR FACULTY FUNDING

- DOE Grants
 - https://www2.ed.gov/fund/grant/apply/grantapps/index.html?src=ft
- Municipal Prizes
 - https://www.cfbroward.org/articles/the-be-bold-prize-rfp-now-open
- Industry Grants or Sponsorships
 - Course Hero Teaching Grant
- Organization Awards
 - The POGIL Project
- Foundation Awards
 - https://www.openphilanthropy.org/
- University-level Grants and Funding
 - https://www.fau.edu/ouri/curriculum_grants.php
 - https://www.fau.edu/techfee/